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Abstract--Analytical techniques are used to find the permeability of a model of a fibrous porous medium. 
The model is an array of thin annular disks periodically spaced in planes normal to the flow, where the 
repeating unit is a square or an equilateral triangle, and the planes are uniformly spaced in the flow 
direction. The solution of the Stokes equations for flow through the array is found by the method of 
distributed singularities, and the drag on a disk is estimated by an asymptotic technique in which the ratio 
of the radii of each annulus tends to unity. From the drag, the flow resistance or permeability of the array 
is found. By matching the thin disks to thin rings (tori), the array simulates fibrous materials like filters, 
in which the fibers are curved, perpendicular to the flow, and randomly oriented. Calculations of 
permeability are made for various ring sizes and spacings, for three array configurations, and for solid 
volume fractions in the range 0.0002q).02. The results show that minimum permeability generally occurs 
for the most uniform distribution of solid material in a plane. Comparisons with equivalent rod arrays 
reveal that ring arrays generally have higher permeabilities, even though the rings create more tortuous 
flow paths. Copyright © 1996 Elsevier Science Ltd 
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1. I N T R O D U C T I O N  

Porous materials made of fibers have a much wider range in flow resistance than porous media 
made of granular particles because the porosity range is much greater. Granular materials are 
necessarily compact and consequently have porosities around 35%. Fibrous materials, on the other 
hand, are generally uncompressed and the porosity can be as high as 99%. The range in porosity 
is more evident when stated in terms of the volume fraction of solid material, ~, because ~b ranges 
from 0.01 to 0.5 for fibrous materials. A common such material is a filter, which is normally used 
to sieve particles of a particular size. Given the particle size and fiber diameter, one can 
straightforwardly determine how much material is required for a filter, or what ~b must be, assuming 
a uniform spacing of fibers. Not so easily determined is the permeability or flow resistance, which 
is usually required when designing a flow system which includes the filter. Estimates of permeability 
can be made from related experimental data or from theoretical formulas. In theoretical work, the 
medium is usually modelled as an array of straight, parallel rods oriented normal to the flow. In 
materials like filters, the fibers are normal to the flow but they are usually curved and randomly 
oriented. The geometrical complexity can be seen in pictures of fibrous materials. Curvature is 
evident, for example, in photographs of kraft pulp (Bolam 1962), steel wool (Battista 1964), and 
New Zealand flax (Isenberg 1967), which show that the curvature is variable and that the radius 
of curvature is of order ten times the fiber diameter. Curvature is also a feature in macromoleeular 
filters, which are aqueous solutions of long-chain polymers. These filters occur in natural and 
man-made processing systems to inhibit or prevent the transport of colloidal particles, and the 
polymer chains are randomly-coiled and intertwined. A distinguishing feature of macromolecular 
filters is that the solidifies are very low: ~b is typically of order 0.0001 (Ogston et al. 1973), much 
lower than the minimum of 0.01 for normal, macroscopic filters (Jackson & James 1986). 

The geometrical feature which most influences permeability is the uniformity of fiber spacing, 
and studies have attempted to quantify the relationship between permeability and uniformity. Yu 
& Soong (1975) investigated the relationship by developing a model to estimate the flow resistance 
for parallel, randomly-distributed rods. They found that the permeability could be as much as 50% 

969 



970 A.M.J .  DAVIS and D. F. JAMES 

above the minimum, i.e. above the permeability for uniform spacing throughout. Sangani & Yao 
(1988) also determined the permeability of random arrays of infinitely long cylinders. They found 
that, for ~b between 0.1 and 0.5, the variation in permeability over several random configurations 
was small. This finding differs somewhat from that of Yu and Soong, but the latter's method was 
approximate and q~ was an order of magnitude smaller. Howells (1974) attempted to study the effect 
of randomness by considering the drag exerted on a sparse array of small fixed spheres or parallel 
circular cylinders. His leading approximation is the Brinkman model, in which the effect on one 
object of all the others is treated as a Darcy resistance, thus introducing the concept of an effective 
medium. The higher approximations take into account modifications in the mean flow due to 
pairwise interactions between the spheres or cylinders, but the work does not reveal the difference 
in flow resistance between ordered and random arrays. 

To our knowledge, the only experiment dealing with uniformity was the one carried out by 
Kirsch & Fuchs (1967). They measured the flow resistance of parallel rods arranged in various ways 
and found permeabilities up to 100% larger for non-uniform arrays than for uniform arrays. Even 
wider variations in permeability have been obtained for actual fibrous materials, as one might 
expect. Jackson & James (1986) collected data of flow resistance for a wide variety of porous 
materials--from glass wool to collagen fibers--and plotted the results as dimensionless per- 
meability versus tk. If the fibers in the different materials had had the same configuration, the data 
should have collapsed on to a single curve. However the plot shows a three-fold variation in 
dimensionless permeability for a fixed value of tk. Some of this variation is due to fiber curvature 
and orientation, but the greatest part is likely due to the non-uniform spacing. 

As mentioned above, the prior theoretical works have generally modelled the medium as an array 
of parallel rods, aligned either perpendicular or parallel to the flow. The array configuration which 
has received the most attention is the periodic square array because the spacing is uniform and 
the mathematics is simpler than for any other configuration. Analytical solutions for Stokes flow 
through a square array have been obtained by Hasimoto (1959), Sangani & Acrivos (1982) and 
Drummond & Tahir (1984). Their analytical techniques differ but, for rods perpendicular to the 
flow, which is the case relevant to the present work, they yield the same equation: 

a-- ~ --- ~-~ In - 1.476 + 2tk + O(~b 2) , [1] 

where k is the permeability in Darcy's Law and a is the rod radius. Sangani & Acrivos found that 
the corresponding equation for a hexagonal array is almost the same as the above equation, the 
constant being 1.490 instead of 1.476. 

A regular arrangement of straight parallel rods is convenient for solving the Stokes equations, 
but such arrays do not adequately represent the complex, three-dimensional structures in fibrous 
materials. We sought to create an alternate model, one which more closely simulates the actual 
geometry but still allows an analytic solution of the Stokes equations. We particularly wanted to 
incorporate fibers which are curved and therefore variably oriented because these geometrical 
features have not been part of any prior study. We also wanted the model to allow variable fiber 
spacing, so that we would be able to explore the influence of uniformity on flow resistance. A model 
which has these features is a periodic array of thin tori or rings, aligned normal to the flow. The 
rings create curvature per se, and the arcs have various orientations. The flow in a ring array is 
inherently three-dimensional, and thus this type of array is more realistic than the two-dimensional 
flow in rod arrays. The spacing between rings can be varied in the model and thus it will be possible 
to explore how permeability is affected by material distribution. 

I. 1. Ring model 

The unit structure of our fibrous medium is a periodic arrangement of identical thin rings in a 
plane. One such arrangement, with the square as the repeating unit, is sketched in figure 1. The 
three-dimensional array is an open stack of such planes, equally spaced and normal to the flow. 
Two arrays with this unit structure are considered here. In one, the planes are arranged such that 
the rings are aligned, i.e. they lie one behind the other. In the other, alternate planes are offset to 
create optimal misalignment; the alternate planes are shifted laterally such that the centers of rings 
alternate with the centers of squares. In this latter structure, the solid elements are continually in 
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Figure I. Square arrangement of tori (rings) in a plane. Each torus is defined by radii a and R, with a << R 
so that slender-body theory can be applied. 

the path of  the flow, and so this array is more representative of  fibrous materials. One expects the 
flow resistance of  this "offset" array to be greater, and the present work is undertaken to quantify 
this effect. 

While the thin ring is a natural representation of  a curved fiber, the toms is also the only hollow 
boundary for which Stokes-flow analytical solutions are available. Stewartson (1983) used an 
analytical solution to show how fluid is reluctant to flow through the toms, a feature which is 
emphasized here, The slender body theory of Cox (1970), reviewed by Lighthill (1976), used the 
flow past a straight circular cylinder for the inner field of  flow past a curved body; hence he did 
not take account of  local center-line curvature. Johnson & Wu (1979) applied slender body theory 
to various motions of  a torus without making the above approximation; they effectively summed 
the series in powers of  (In E)-l, the terms which arise in Cox' method, to obtain the force with errors 
of  order E 2, where E is the ratio of the cross-sectional radius to the radius of  curvature. This analysis 
could be extended to the periodic arrays considered here and the same results would be obtained, 
so that slender body theory provides the essential method. However, the calculations for a toms 
are sufficiently complex that a simpler method is sought. The chosen method is to introduce an 
equivalent body, the thin annular disk, with dimensions chosen to produce the same drag force, 
as the toms, to O(E), for broadside motion in an otherwise unbounded flow. We then take 
advantage of  the known and easier calculation of the force exerted by a streaming flow on a thin 
annular disk in the presence of  fixed boundaries (Davis 1991b). Hence the model actually treated 
here is a periodic stack of  planes of  thin annular disks, with alternate planes perfectly aligned so 
that each plane containing disks is a plane of  symmetry of  the flow. The subsequent sections present 
the detailed analysis to determine array permeability for the most general periodic array allowed 
by the symmetry restriction. Then calculations are carried out for particular arrays. 

2. F O R M U L A T I O N  OF THE  P E R M E A B I L I T Y  P RO BLEM 

A mean flow, - U~a, is disturbed by the presence of  a three-dimensional periodic array of  thin, 
rigid annular disks, in broadside position to the flow. The surfaces of  the disks are given by 

r = r , + t ( c o s ~ , ~ l + s i n ~ , ~ 2 ) ,  ( 1 - - E ~ < t ~ < I + E ,  - - n < ~ < n ) ,  [2] 

where 

r, ---- r/l a (I) d- n2a t2) -I- naa ta) (-- ~ < integers nl, n2, n3 < oc). [3] 

Both a ~I) and a t:) are in the plane of a disk, with a ~) = d~ ~, and with a t3> denoting the separation 
and lateral displacement between two disks in adjacent planes. The Reynolds number of the 
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viscous, incompressible flow is assumed to be sufficiently small for the velocity field v to satisfy the 
creeping flow equations 

# V2v = grad p [4] 

div v = 0 [5] 

where # is the viscosity and p the dynamic pressure. The no-slip boundary condition requires that 
v = 0 for all r defined by [2]. 

To simplify the calculation, the disks are arranged such that each one lies in a plane of symmetry 
of  the flow. This is accomplished by perfect alignment of alternate planar arrays and then by 
aligning the remaining planar arrays or by offsetting them by a half distance. Hence 
8 (3) = D ~ :  3 a t- V 1 a O) q-V2 a(2), where D is the distance between adjacent planes, and (v~, V2) may have 
the values (0,0), (0,1/2), (1/2,0) or (1/2,1/2), corresponding to perfect alignment, non-alignment in 
one direction, non-alignment in the other direction, or complete non-alignment. 

The symmetry of  flow about each disk allows the total disturbance flow to be constructed by 
distributing normaUy-directed force singularities over the disks. The pressure jump across a disk 
provides the density function, and will denoted by 

-~X(t ,~b)=-~{Xo(t)+2~[X2~(t)cos2n~k+Yz~(t)s in2nd/]} ,=l  

(1 - e  ~< t ~< 1 +¢,  -T t  < ~b ~< it) [6] 

since the given array evidently has period 7r. If a °). a (2) = 0, the sine terms can be eliminated by 
choosing a°)= dj~j(j = l, 2). The velocity field V, due to force singularities of  strength 8rr#~ 3 at 
the points r, (defined by [3]), is now introduced. According to appendix l, V can be expressed as 

V(r) = 1 -~3- x3grad + V ()(r) [7] 

where V (R~ satisfies [4] and [5] everywhere and is given by 

V(R)(r ) = _ 2~ ~3 - (~3 - x3grad) erf r 

-I- ,~0' [~3 - (x3 - x,3)grad] {i r _ ~ ,  i erfc [ I r - r~l (~) ' /2 ]  } 

where ~t is a "moderate constant" (Hasimoto 1959) and r = a °), (a (2) x a(3)), Hence, from [6] and 
[7], the total flow field can be written 

- X(t,  ~b){(~3 - x3grad) [(xl - t c o s  0 )  2 -~- ( x  2 - t sin ~k) 2 + x~] -I/2 v =  U ~ 3 + ~  - . j l - ,  

+ V(R)[r- t(cos ~xl  + sin ~x2)]}t dt d~. [9] 

The symmetry has already eliminated tangential flow at each disk, and no normal flow is ensured 
by satisfying the integral equation 

- -  Xo(t)Go(P, t) + 2 [X2~(t)cos 2nO + Y2~(t)sin 2nOlG2.(p, t) t dt 
~ 2 j 1 - ¢  n = l  

In II+~ X(t,  ~b)V~R)[(p cos 0 - t cos ¢)~t + (P sin 0 - t sin ~')~2]t dt d~b, = I - - ~ 2  d _g j l_~  

( 1 - - e ~ < p ~ < l + e ,  -Tr  < 0 ~ < n ) ,  [10] 
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where 

mOdO 
G.(p,t)= n ( p 2 j f  -~-_._-~piCOsO)l/2 . 

In [7], V (R) evidently plays the role of a reflected velocity field due to the rigid boundaries of other 
disks. 

By integrating the Fourier series [6] for the pressure jump, the force on each disk is found to 
be 

after defining 

I 
I + t  

-- 16U# Xo(t)t dt is = - 16U#Fots, 
t ] l - t  

/ t l + t  l 1+~ F2~ = l X2~(t)t dt (n >1 0), H~ = Yz~(t)t dt (n >1 1). [12] 
dl 

The mean pressure gradient due to the array of disks is therefore 16U#Fo/, and must, by Darcy's 
law, be equated to UI~/K, where the permeability x is dimensionless because the length scale has 
been set equal to unity. Hence x is determined by 

x = z/16Fo. [13] 

3. ASYMPTOTIC SOLUTION FOR THIN DISKS 

It has been demonstrated that a viscous fluid is reluctant to flow through an annular disk (Davis 
1991a) or a torus (Stewartson 1983), and consequently the flux factor and force coefficient change 
slowly as the annular width decreases, i.e. as ¢ decreases. One method for solving an integral 
equation for flow past an annular disk in the presence of fixed boundaries is an asymptotic 
technique for c ---, 0, which was the technique of Davis (1991b) for flows which are axisymmetric 
but not necessarily symmetric about the plane of the disk. Fortunately the dimensions of the rings 
in the present application are suitable for the use of such asymptotics, having identified the role 
of V~ R) by its appearance as a reflected velocity field in [10]. 

It was subsequently realized that Leppington & Levine (1972) had used a superior method for 
a similar calculation, and their simpler method is adopted here. By use of formulas given by 
Gradshteyn & Ryzhik (1980), the integral in [11] can be expressed in terms of a toroidal Legendre 
function, and then a hypergeometric function is available which has an asymptotic expansion for 
values of the argument close to unity. By this technique, 

k [-16 min(p2' t2)] ] p2-T~ ~. G.(p,t)~21n[- • - 4 _  f o r p _ t ,  
$=1 

and, after setting 

p = l + e x ,  t = 1 +¢y, [14] 

Gm(x,y)...21n(el x 8-y1]~-4 s.t 2s - 1 ~m __~___1 (_  1 ~<x # y  ~< 1, e << 1). [15] 

Then the leading order terms in [10] can be written down by setting t = 1 on the right-hand side 
and substituting [6], [14] and [15] to obtain, on considering Fourier components, 

2F0 In + 2 X0* (y) In dy = 7~ 2 _ Fj'00 - 2 (F2,f0m + n2,. h0, ) 
--l m--l  

_ 1 1 ] + 2  2 [ F ~ ] I l n ( 8  ) 2s~ , .  2s , _ , L Y ~ ( y ) j m ~ )  °y 
l [-X*(y)-]. f 1 '~. 

f f~°] - 2 ~ (Fz~ [ f ' ~ ]  + Hz~rh~]~ (n~>l) [16] 
= - Fo ho~ m-I h,,,,, Lg~d /  
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cos 2nO cos 2m~b ] 
sin 2nO sin 2too { V~ R) [(cos 0 - cos qJ) ~l + (sin 0 -- sin ~b) ~2] 

cos 2nO sin 2m~k 

+ V~a)[(cos 0 - cos ~O) ~ + (sin 0 + sin ~O) ~21}dO dqJ [17] 

and 

X*(Y)  
Y *  (y  )_] 

Each equation, therefore, reduces to the form 

;' Z(y) ln  = dy = C, 
- l  

whose solution 

i.e. " 

( - 1  ~<x ~< 1) 

C 1 
Z ( y )  = ( - 1  < y < 1) 

ln2 x/1 _ y 2  

displays, in the simplest manner, the expected square-root singularities in the pressure jump at the 
rim. However, after solving [16] for {X*(y) ;  n >i 0} and { Y*(y) ;  n/> 1}, only the integral of Z ( y )  
is required in [18] to obtain the following linear system of equations for the ratios 
{F2./Fo, H2./Fo; n >1 1}: 

F°[2ln(l~6e)+f°°]+2~(F2~f~+H~h°')=~2r~=, 
2 [H2~] [ In (T)  - 2 _~, 2s-~] -I- F° [fh~] -I- [19] 

- m = ~  " " n . -  L ~ . J  L g . , . J /  

This system must be truncated, not only for practical purposes but also because of  the 
presence of  the psi-function which appears in the asymptotic expansion [15]. The first equation of  
[19] yields the required ~2/F o in terms of  the zero-order approximation as well as a series involving 
the ratios {F2,/Fo;H2,/Fo;n >i 1} which are determined by the remaining equations. The 
coefficients, defined by [17], are found by expanding the normal velocity at an infinitesimally thin 
disk, due to singularities at all other disks in the periodic array, in a double Fourier series 
that is evidently symmetric in 0 and ~O. The coefficients depend on the geometrical arrangement 
of the disks, but not on e which does not enter the calculation until [19] is solved. Note that 
f00 signifies the axisymmetric effect on one disk of  all other disks and suggests the notion of 
an "equivalent medium", similar to the medium which arises for a random array of small 
spheres. The non-axisymmetric terms turn out to be small or negligible in the subsequent 
computations. 

4. C A L C U L A T I O N S  OF P E R M E A B I L I T Y  FOR P A R T I C U L A R  A R R A Y S  

4. I. Matching a thin annular disk to a torus 

Having developed relations to describe flow past thin annular disks, the disks are now equated 
to tori (rings) so that the development can be applied to arrays of rings. Each torus is considered 
to have radii a and R as defined in figure 1. When the asymptotic formula for the force coefficient 
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for an annular disk (Davis 1991a) is equated to that for a torus (Stewartson 1983), it is found that 
aiR corresponds to Ee~a/2. In the current formulation, the relative width of  the annulus is 2E, 
instead of  E as in the work cited above, and consequently the comparison is between ln(16/E) and 
[ln(8R/a) + 1/2]. The reason for this change is to use the mean radius of  the annulus as the length 
scale defined by the disk. Kim & Kim (1991) have recently shown, with higher-order accuracy than 
is required here, that when the mean radius is used as the length scale, the terms of  order E obtained 
by Leppington & Levine (1972) and Spence (1970) are thereby absorbed and so the relative error 
in the leading-term asymptotic estimate of  the drag is of  order E 2. Table 1 demonstrates this 
accuracy by comparing the drag computed by Davis (1991a) to the asymptotic estimate, based on 
the mean radius. 

It may be shown that the O(E 2) error estimate remains valid when fixed boundaries are 
introduced (Davis 1991b), provided that the leading term in the reflected velocity field V tR) is 
evaluated at the center-line of  all rings, as in [17]. Consequently, the error due to the use of  
asymptotic estimates in the calculations which follow is within about 1% for values of  E less than 
0.1. The calculations are therefore carried out for E < 0.1. 

4.2. Square arrays 

With the disks equated to tings, the theory in section 3 is now applied to arrays of  rings. The 
first application is to the initial array described in section 1.1, the one in which the tings form a 
square lattice in each plane and are aligned in the flow direction. The side of  each square is b, as 
indicated in figure 1, and B is the distance between planes. Thus, in [3], 

a(t) --  ~:t, a(2) --  ~ ~:2, a(3) ~'~ ~3" 

Hence • = b2B/R 3 in [A5] and the solid volume fraction of  the medium is given by 

~b=2~ 2 ~ I,,b,] B '  [201 

or, (a/R) 2 = rck /2n 2. 
It follows that the dimensionless combination k/a 2 corresponds exactly to 2n2~c/dpT, where x is 

the dimensionless permeability in [13]. This last equation shows that, for this particular ring model, 
the approximation to the permeability is given by 

k n 2 

The symmetry of  the square array reduces the period of  the velocity field to rG2, with no sine terms 
in the density function. A sufficiently accurate solution is obtained by writing 

X(t, ~k ) = Xo(t) + 2X4(t) cos 4~k 

Table 1. Estimates of drag on an annular disk 
Calculation 

Radii ratio Asymptotic estimate by Davis 

( 1 - ~ )  E- ~ n2/2(1 + E)IR(16) -~ (1991a) % Error 

1/2 3 0.9561 0.9810 - 2.54 
2/3 5 0.9385 0.9494 - 1.15 
4/5 9 0.8937 0.8977 - 0.45 
5/6 11 0.8749 0.8778 - 0.33 
8/9 17 0.8314 0.8329 - 0.18 

11/12 23 0.8006 0.8015 - 0.13 
24/25 49 0.7257 0.7259 - 0.03 
49/50 99 0.6631 0.6634 - 0.05 
99/100 199 0.6088 0.6094 - 0.11 

IJMF 22/$---43 
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in [6], whence [19] reduces to 

2F4 In -- 105J + F0f20 + 2F4f22 = 0. 

The simplest three-dimensional array is the cubical lattice, i.e. B = b. This array may be thought 
of  in terms of  the cell model, in which each ring is at the centre of a cubical cell of side b. 
Permeabilities were calculated for this array, and there are various ways to present the results 
because there are several independent variables. Perhaps the way to start is to fix the cell size b 
relative to the ring radius a, and vary the ring size R. With b/a fixed, varying R/a means that the 
solid volume fraction qb also varies. Results are given first for b/a = 100, which corresponds to 
solidities of  order 10 -4, i.e. to a very dilute system. This order is appropriate for macromolecular 
filters, as noted earlier, and is at the low end of the range of th in the present work. 

The upper end of  the range is dictated by several conditions. The first is to meet the slender-body 
restriction, c < 0.1, which is found to correspond to a maximum value of 0.08 for aiR. The second 
condition is that one ring must be effectively in the far field of other rings, that is, there must be 
adequate spacing between adjacent rings in the same plane. The closest distance is taken to be five 
ring radii, and so the restriction on b is b > 2R + 5a. The third restriction is on B, and its minimum 
value is taken to be 10a to create far-field conditions between rings in adjacent planes. When these 
restrictions are combined, the maximum value for q6 is 0.03, which is within the practical range 
for filters. 

Calculated permeabilities are presented in figure 2 for the cubical array, and for the equivalent 
"offset" array, i.e. the array which is identical except that alternate planes are shifted b/2 in each 
lateral direction as described in section 1.1. Despite the shift, every plane in the offset array remains 
a plane of  symmetry of  the flow, so that the use of stokeslets only remains valid, with 

a ( ' ~ = ~ ,  a (2~= ~2, a ° ) = ~ 3 +  (~1+x2). 

Figure 2 shows that the permeability for this offset array is below that for the cubical array, as 
expected, but it is only just below, indicating that the more tortuous flow paths have little effect 
on flow resistance in this dilute regime. The range of R/a in the figure is dictated by the conditions 
given in the prior paragraph: R/a must be greater than 12.1 to satisfy E < 0.1, and R/a must be 
less than 95/2 to satisfy b > 2R + 5a and b/a = 100. 

As the ring size and therefore the solidity increase in figure 2, the permeability naturally 
decreases. However, once the rings nearly fill the cubical cells and R/a approaches 50, the 
permeability is seen to increase again and hence minima are created. The two minima are 
indistinguishable and are found to correspond to the ring size which causes maximum blockage 
within a plane. More specifically, it is the size which makes the area inside the rings equal to the 
area outside. As mentioned earlier, Stewartson (1983) showed that fluid is reluctant to flow through 
a ring, and equating areas removes this reluctance. This condition is met when b]R = x / ~ ,  and 
when b/a = 100 as in the present case, the corresponding value of R/a is 100/x/2n or about 40. 
The minima are close to this value in the figure. 

The assumption is made in the prior paragraph that the flux through a ring is equal to the 
flux around the ring if the corresponding areas are equal. This principal is not unreasonable, 
but its exactness needs to be established because use is made of the principle throughout the 
discussion of  results. The principle, hereafter referred to as the equal-area principle, is dealt 
with in appendix 2 where the flux through a ring is calculated. The work there shows that, for 
the geometrical conditions of  interest, the flux through a ring is close to the flux if no rings were 
present, the difference being comparable with other small neglected terms. This calculation is 
equivalent to comparing fluxes inside and outside a ring. Hence the equal-area principle holds to 
order ¢. 

The system can be made more concentrated by making the rings thicker or by bringing the 
planes closer together, and then differences between the aligned and offset arrays are expected. 
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I0 

J 

Inverse rodLk rotLo R/o 

= J  

Figure 2. The permeability of  two periodic arrays of  rings, each comprised of  the planes in figure 1 with 
b / a  = 100 = B/a .  T he  solid curve is for an array in which the ring centers form a cubical lattice. The dashed 
curve is for an "offset" array, which is the same as the cubical array except that every other plane is offset 

to create maximum blockage of  the flow. 

Calculations were carried out for a system in which both changes were made, namely b/a was 
reduced to 50 and B/a to 20. For this cell size, the range of R/a is 12.1-22.5, and the range of 
~b extends to 0.01, which approaches the maximum of 0.03 permitted by the theory. The calculated 
permeabilities are shown in figure 3. The offset array is now distinctly below the aligned 
array--hereafter termed the square array--which illustrates the significance of tortuosity. For the 
square array, the equal-area principle for minimal permeability should still apply. Indeed, there is 
a minimum when R/a is about 20.5, which is close to the theoretical value of (50/v /~) .  For the 
offset array, the planes are too closely spaced for the principle to apply and the permeability 
continues to drop as R/a and the solidity increase. 

The two curves nearly coincide at R/a around 19, which is found to be the condition for 
maximum shielding in the offset case. The geometry for R/a = 19 is sketched in figure 4, and it 
is seen that the center ring is shielded by arcs of the four rings in front of it. For this spacing, 
shielding is comparable to that when one ring lies behind another. Hence, the difference in 
permeability between aligned and offset rings ought to be minimal, which is what figure 3 shows 
at R/a = 19. 

4.3. The equilateral array 

Another arrangement which can be investigated using the general theory is the array formed 
of planes in which the ring centers are at the vertices of an equilateral triangle, as illustrated 
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Figure 3. Permeability of aligned and offset arrays of rings. The arrays are similar to those in figure 2 
but the rings are larger and the planes are more closely spaced, with b/a = 50 and B/a = 20. 

figure 5. As  indicated, the center-to-center distance is still b The rings are taken to be aligned, in 
which case the vectors o f  [3] are 

b l b  
a(l) = ~ 5[1, a(2) = ~ (~1 + x//3~2), a(3) = ~  ~ 3 . B  

t x 
Z 

t , 1 , 

• s S 

I L I I 

Figure 4. The offset array for R/a = 19 and b/a = 50, which are the conditions in figure 3 where the 
permeability curves nearly touch. The dashed rings are in one plane and the solid ring is in the plane 
behind. Note how this spacing causes the central ring to be well shielded by the four upstream rings. 
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Figure 5. The equilateral array is made up o f  planes in which the ring centers form equilateral triangles. 

Hence T = w/3b2B/2R3, and the solid volume fraction and permeability are respectively increased 
and decreased by the factor 2/,,/~ relative to the square array; that is, 

4n2 f a ~2 (R y R 
q~ = ~ \ R ]  ~ b ]  B" [21] 

Thus again, 

k rt 2 

a 2 8~bF0" 

The velocity field now has period n/3, with no sine terms in the density function. The estimate 

X(t, ~b ) = Xo(t) + 2X6(t) cos 6~ 

in (6) then reduces [19] to 

13Ol6  
2F6 2 In ~ - ~ . ]  + F0f30 + 2F6f33 = 0. 

As shown by figure 5, the distribution of solid material in a plane is more uniform for this array 
than for the square array (figure 1), and consequently the permeability should be lower. This 
comparison is made in figure 6, for the same ring size and the same solidity, and for completeness 
the offset array is included. With a/R and q~ fixed, k/a 2 depends primarily on in-plane spacing and 
hence k/a 2 is plotted versus b/R. It must be kept in mind that, as b/R increases, B[R decreases 
to keep ~ constant, according to [20] and [21]. 

Plotted in this way, a minimum is again found for each array. For the square and offset arrays, 
the minima occur when b/R is about 2.40, which is close to the equal-area value of x,/~. When 
the equal-area principle is applied to the equilateral array, it is found that the condition is 
b/R = (4n/x/~) 1/2 or 2.69. The minimum of the equilateral curve in figure 6 is close to this 
theoretical value. 

A number of other features of figure 6 should be noted: 

(i) the permeability for the equilateral array is below that for the square array, confirming 
that the more uniform distribution of ring material causes this medium to be less 
permeable; 

(ii) for the square and equilateral arrays, the permeability rises rapidly with b/R. The aligned 
rings in these arrays can be thought of as rows of rings in the flow direction. As b/R increases 
the rows become increasingly isolated, and they become more compact because 
B/Rsimultaneously decreases. Hence the flow passages between the rows of rings become 
larger and the permeability rises; 
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Figure 6. The dependence of permeability on ring spacing within the plane• The ring size a/R = 0.01 and 
the solid volume fraction ~b = 0.0002. 

(iii) the offset array does not exhibit this same pattern--k/a 2 is virtually constant for b/R up 
to about 4. The difference is due, of course, to misalignment of the rings. The passages which 
are clear for the aligned rings are now filled with misaligned rings, and this blockage remains 
as the rings separate. However, as b/R becomes very large, the offset array also evolves to 
rows of  rings, but the rows are not as compact as those in the comparable square array. 
Hence k/a 2 should increase when b/R is sufficiently large. Figure 6 indicates that this 
behaviour starts when b/R exceeds about 4; 

(iv) k/a 2 is 6000 for the square array when b/R is about 3.40, and when b/R is about 4.80 
for the offset array. The arrays with these spacings are illustrated in figure 7, with the 
dashed circles in (b) indicating rings in an adjacent plane. In viewing these arrays, it should 
be kept in mind that B/R is 0.85 in (a) and 0.43 in (b); hence adjacent planes are much closer 
in the offset array. The two arrays in figure 7 appear to be identical. In fact, the 
center-to-center distance in (b) is 3.40 (viz., 4.80/x/2 ), the same distance as in (a). Hence 
it is not surprising that these are the conditions which produce the same permeability for 
these two arrays. 

The results in figure 6 are for highly dilute systems, and the corresponding curves for more 
concentrated systems are given in figure 8 where ~b is 0.01 instead of  0.0002. At first glance, it seems 
that figure 6 has been repeated with a different ordinate scale, but that is not the case and there 
is actually a slight difference in the shapes of  the two sets of  curves. The similarity of  figures 6 and 
8 is in contrast to the distinct sets of curves for the same two solidities in figures 2 and 3. Because 



SLOW FLOW THROUGH A MODEL FIBROUS POROUS MEDIUM 

0 0 0  
0 0 0  
0 0 0  

(a) 

981 

O O O 
/ X ~" "X 

0 0 0 
/ s  • .,. 

I ~ t / 
I 

Co) 

Figure 7. Geometric similarity of two arrays. (a) square array, with b/R = 3.40; (b) offset array, with 
b/R = 4.80, and with tings in one plane (solid) shown along with rings in an adjacent plane (dashed); when 
the two planes are superposed as shown, the center-to-center distance is the same as in (a). Figure 6 shows 

that the dimensionless permeability is the same for both arrays, namely 6,000. 

of  the similarity, this way of  presenting the results--k/a 2 vs b/R, with a i r  and ~ fixed--is probably 
the best format for illustrating the permeability characteristics of  ring arrays. 

We have so far investigated the effects of  ring size (figures 2 and 3) and in-plane spacing 
(figures 6 and 8). The remaining geometrical factor to consider is the spacing between planes. 
This factor, B/R, is related to shielding and some aspects of shielding have already been 
made evident. Still it is worthwhile to investigate this factor systematically and so k/a s is plotted 
versus B/R in figure 9. Here the ring size a/R is fixed and the blockage is optimal, i.e. b/R is v / ~  
for the square array and ( 4 / t / G )  I/2 for the equilateral array. The influence of  B/R is much less 
relevant for the offset array, and so this array is not included. In viewing this figure, it must be 
kept in mind that as B/R increases ~ decreases proportionately because a/R and b/R are fixed. 
For  large values of  B/R, the flow past one plane does not affect the flow through the next and 
then flow resistances are linearly additive. The consequence is that k should be linear in B and 
that is the pattern seen in the figure. Another feature of  the plot is the minima. These arise 
because of  shielding at small values of  B/R. That is, as B/R decreases and the rings move closer 
behind one another, each contributes less to the overall resistance and so the permeability rises. 
The interesting point is that the permeability rises even though the solid volume fraction is 
increasing. 

The prior graphs do not reveal the influence of  curvature, which was an objective of  this work. 
Probably the best way of  doing so is to compare present permeabilities with those for rod arrays. 
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Figure 8. The dependence of  permeability on in-plane spacing, with a/R =0.08 and q~---0.01 for 
comparison with figure 6. The curves appear to be identical but the permeability scale is different because 

the rings are eight times thicker and ~b is 50 times higher. 

The dimensionless permeability for the basic rod array (the period square array) is a function of 
one independent variable only, ~b, as given in [1]. For ring arrays, however, k/a 2 is a function of 
three dimensionless parameters---specifically, three of ~, a/R, b/R, and B/R. The four are not 
independent because they are related to each other through [20] or [21]. With more independent 
variables for ring arrays, it is not immediately obvious how to choose the variables to achieve 
equivalence of the rod and ring arrays and to facilitate their comparison. One certain basis for 
comparison is that the solid volume fraction ~b must be the same, i.e. for the square arrangement 
of rings, 

\ sb2 }.o.. 
[221 

where B for the rod array is the spacing between rods. B is then the distance between planes for 
both arrays, and this spacing must be the same because any comparison of ks is fundamentally 
a comparison of pressure gradients in the flow direction, and thus material must be distributed 
equally in this direction. Another evident basis for making a comparison is that the rod radius must 
be equal to the ring radius. With a and B the same, the preceding relation simplifies to 

( - - g - ) . o  = 1. t231 
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Figure 9. The dependence of permeability on between-plane spacing. The ring size a/R = 0.01 and the 
1/2 in-plane spacing b/R = x/2~ or (47t/x/3) for the square or equilateral array respectively. Thus $ is 

proportional to R/B, according to [20], [21]. 

Various combinations of  b/R and B/R will satisfy [23] and an obvious choice is the one which 
makes ring spacing in a plane as uniform as possible. In a rod array, the spaces between solid 
elements are uniform throughout; in a ring array, the spaces cannot be uniform, and one way of  
making them as uniform as possible is to invoke the equal-area principle, i.e. to make b/R = ~/~. 
It then follows from [23] that B/R is equal to unity. 

The permeability of  a square ring array was calculated for the above conditions, and the 
ratio of  this permeability to that for a rod array at the same $ was found and plotted in 
figure 10. The analogous ratio was found for the equilateral array (where R is again found to 
be equal to B) and this ratio is also given in figure 10. The plot clearly demonstrates that 
these ring arrays are more permeable than equivalent rod arrays. The ratios tend to unity as 
the solidity decreases, which is expected because the effect of  curvature diminishes as 
(i.e. a/R) goes to zero. As $ increases, the ratios increase but never become very large. For  
solidities up to 0.01, the difference in permeability between ring and rod arrays is no more than 
15%. 

Other combinations for b/R and B/R which satisfy [23] are possible, and the effect of  offset planes 
could also be investigated. These combinations will not be explored in a systematic way here, but 
results from one particular combination will illustrate that there are exceptions to the general result 
of  figure 10. This particular ease is the one for which the ring diameter is equal to the plane spacing, 
i.e. R = B/2, and hence b/R = 2x/~. When these conditions are applied to the square array, it is 
found that the permeability is uniformly about 2% less than that for the condition in figure 10. 
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Figure 10. Relative permeability. The ordinate is the ratio of the permeability of  a ring array to that for 
the equivalent rod array. The in-plane spacings are identical to those in figure 9 and the between-plane 

spacing is in each case the same as the ring radius (B/R = 1). 

And when the conditions are applied to the offset array, calculations show that the permeability 
is less than that of  the equivalent rod array. This latter comparison is presented in table 2 
where it is seen that the relative permeability is less than unity, in contrast to figure 10. (In 
the table, ~ extends only to 0.0016 to satisfy a/R < 0.08.) The ratios in table 2 are not much 
below unity--in fact, the amount below is comparable to the contribution of  the neglected terms 
in the analysis--but they are such as to suggest that a ring array may be less permeable than a 
rod array. 

Table 2. Permeability of an offset ring 
array relative to an equivalent rod 

array 
k /a2(rings) 

c~ k /a2(rods) 
1.O0 x lO -4 0.9939 
1.59 0.9935 
2.51 0.9931 
4.00 0.9925 
6.31 0.9919 

lO.O0 0.9910 
15.85 0.9899 



SLOW FLOW THROUGH A MODEL FIBROUS POROUS MEDIUM 985 

5. CONCLUSION 

The primary finding of this work is that an array of rings is generally more permeable than an 
equivalent rod array. With rods, the solid elements are distributed in the most uniform way 
possible. With rings, the solid elements are variably oriented and curved, but these factors generally 
do not compensate for the non-uniform spacing of the elements. However, the tortuosity 
induced by curvature can, under the right circumstances, compensate for the uneven spacing, as 
the ratios of close to unity in table 2 demonstrate. 

This work has been carried out for dilute systems, for solid volume fractions up to 0.01. For 
higher solidities curved elements might contribute more resistance than rods, and this trend is 
apparent in table 2 for non-aligned rings. For aligned rings, however, the trend in figure 10 is the 
reverse: ring arrays are increasingly more permeable as the solid fraction rises. 

The present work is also useful for the purpose of making estimates of the permeability of a filter 
or of any other fibrous porous medium. The results demonstrate that a rod array is a reasonable 
model for any homogeneous fibrous medium, and its permeability is a virtual lower bound. That 
is, as a first approximation, the permeability of a homogeneous fibrous medium is equal to that 
of the equivalent rod array; to a second approximation, the permeability is of order 10% higher. 
Hence reliable estimates of permeability for fibrous materials can be made for engineering purposes. 
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APPENDIX 1 

Perodic Array of Force Singularities 

The velocity and pressure fields due to a periodic array of force singularities were constructed 
and rearranged according to the technique of Hasimoto (1959), with some adaptation as described 
below. 

The velocity V and pressure P due to a force singularity of strength 87tbt113 at r = z can be 
expressed as 

V = ¢I)i 3 - (x3 - z3)grad ~, P = - 2# 0x3' [A 1] 

where the harmonic function tl) is given by 

1 ('1"1"1 ,~.(, z) 
- dk=lr-z, -I 

after axisymmetric inversion in (k~, k2, k 3 ) space. However, for a periodic array of such singularities 
at r,,  defined by [3], it is necessary to write [A1] as 

v=~f f fk - - -~(113-~4)e- ' t "r - ' )dk ,  

so that the factor e -'~z in [A2] can be replaced by 

e=.  j jJ ik,  dk [A2] 

and 

where 

b(t) = _1 (a(2) × a(3)), b(2) =-1 (a(3) x a(l)), b (3) =-1 (a(l) × a(2)), [A4]  
T T T 

T ---- a 0). (a (2) x a (3)) 

denotes the volume of  each "cell". Hence the expressions [A2] now yield 

V 8n _ ,  1 I- K3K i 1 
= T K~fO K'2L113--g-2(  I I -I- K2112 + K3113) e'X'r 

,._1 

grad P = 8rc#~ J13 + x~o ~-~ (Km11! + K2112 + K3113)e ~'' , 

[A5] 

[A6] 

~ ~ e -'tr* = 87~ 33(k • aO))6(k • a¢2))d(k • aO)), 
n I n 2 n 3 

where 6 denotes the periodic delta function defined by 

f 1 f e - ~ ° .  = 6 ( o  - 2l ) = 
I = - - c / 3  - - o 0  

The values Km of k at which contributions to the Fourier integral arise are then determined by 
integral multiples of (270-~k. aU)(j = 1, 2, 3), i.e. 

Km= 27r (rn~ b (1) + m 2 b (2) + m 3 b °)), [A3] 
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where the summation is over all integral triads (ml, mE, m3) in [A3], except (0,0,0) for which the 
corresponding contribution is a uniform pressure gradient due to the finite force in each "cell". 
This is demonstrated by integrating the equation 

#V2V = grad P - 8n /z  t 3 ~ 6 ( r  - r , )  
It 

over a "cell". Note  that if the singularities are shifted to (y + r.), then factors e -~x 'y  must be inserted 
in [A6], in which the notation is K = Kl t l  + K2tE + K3t3, K = IKI for each K defined by a triad 
m i n  [ A 4 ] .  

After noting that [A6] is of  the form 

where 

V = S I ~3 dl- grad OS2 
OX 3 ' 

[A7] 

8n 1 
S i = - -  ~7 ' ~ e  ,x, /..a ]~2i ' 

"t" K # 0  ~x 

the convergence of  the series can be crucially improved by using Evald's technique (Evald 1921) 
to transform the functions in [AT] to 

2~ 2 [  (~)1/21 8~ t l•.t_aK2/4n 
Ir r.I erfc + - z x , , o  K 

OS2 ~(X3_X,3)~ [ (~)1/2] , K3[14_ 4~ ,̂X.r_~X2/4" 
~x3 = I r - - r~[  errc I r - r ° l  +2_~ ~ K-2~ -0¢K2, ]~ 

where ~ is a moderate constant. 
However, r0 = 0, so the contribution of  the n = 0 terms to [A7] can be rearranged as 

1 t 3 - x 3  g r a d ( l ) - 1  t3erf lr(~)l /2]+x3grad{! e r f [ r  (~)1 /2]} ,  

in which the first two terms are the usual singular terms due to a force singularity at the origin 
(z = 0 in [A1]) and the remaining terms are regular at r = 0. 

A P P E N D I X  2 

Flux Through a Ring 
According to [9], in which lengths are dimensionless, the flux Q through a ring is given by 

Q = t3"v(s cos 0, s sin 0, 0)s ds d0 
it 

= - -  U ~ ( 1  - E) 2 + X(t, ~k)t dt d~b s ds dO 
d - ~  d l  . . . .  [ s2  + t2 - -  2st COS(0 -- ~k)] 1/2 

U ~ ' f  I+' f ~  ;0 I-c X(t, ~k)t dt d~b t3 "V(R)[( s cos 0 - t cos ~b)~l 
+n-~ - ~ j l - ,  

+ (s sin 0 - t sin ~k)~12]s ds dO. 

The second double integral in the second term is, according to [11]: 

fo I - '  Go (s, t)s ds ,-, 4 

[A8] 
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and hence the second term in Q is ~(8U/n )Fo ,  by use of [12]. So the contribution of the first and 
second terms to the flux Q is 

8 Fo], [A91 ,~ -- Un[1  --~5 

which, unless the rings are too close, is 

8 

, -~- -Un[1  2 in (~.6) +f00 ] . 

If the other rings are ignored, this expression reduces, in turn, to 

-Urc  [1  I n 0 6 ) ]  ' 

as in [2.20] of Davis (1991a). 
Consider now the third term in Q, given by [A8]. From [8], 

2~ 1 
13"V(R)[(s cos 0 -- t cos ~')~1 + (s sin 0 -- t sin ~)t2] = 

r r 

+ ~ ] ' [ l + x * 3 ~ x 3 ] { I r - - ~ l r ,  l e r f c [ l r - - r * ' ~ / ~ ] } , , , o  

+8nz ~ , 0 ,  5 1-- 1 - - 4 n T K Z J , , 3 j , ,  

°rfE,.21 

[AIO] 

The last term in [A10] requires ~ > 0 for convergence but 

2 2 ' - .  ~ 

which enables a to be set equal to 0 in the flux integral, thus assigning the error functions the values 
1 and 0 respectively. Then two terms vanish in [A10] while another reduces to - r  -~ and thus its 
contribution to Q cancels the second term in [A8]. Hence 

16U ~/K~+K22 f "  I 1+'~ Q ,-, - On + - -  ~ '  K4 J I [x /K~+K~]  X(t,d/)e-it(Kte°sq'+K2si"*)t dt d~O. 
~" K#O - n , J l - ~  

The force singularity distribution has been found to be essentially axisymmetric, i.e. X(t ,  qJ) ~- X o (t) 
and hence, with F0 defined by [12], 

2 2 

Q ,,, - Un + 32Un F 0 E '  ~ t r ~ .  ~ tx//--~+K~]J0tx/K~+K~],--, tAll] 
T K # 0 /X'4 

where, for the square array, 

2rim1 r,- 2nm2 2nm3 
K, = - - d - ,  "~ = - - - Y - '  K,  = - - - i f - ,  ~ = a~D, [A12] 

The triple summation in [A11] can be regarded as a Riemann sum and hence, for d, D >> 1, the flux 
is approximated by 

-- Un +--Fo~ 3-oo | (k 2 + 12)2Jl(k)Jo(k)k dk  dl = - U~ 1 - Fo , 

as in [Ag]. So the V (R) term in [A8] --* 0 as d, D --. ~ ,  as expected. 
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To demonstrate the equal area/equal flux principle, it is sufficient to consider the limit D ---, 0% 
in which case another Riemann sum yields 

2n 1 n (K~ + K2 2 # 0). 
-D m, = - ~o ~ ~ 2 ( K ~  + K 2,)3/2 

Substitution of  [A12] and some rearrangement of  the double summation in [A11] then shows that 

lim Q,-,  - U n  1 ~ m ~ + ~  J'  -d- - ~/m~ + m~lJ0l- d- . [A13] 
D ~ o o  m l = l  m2=0  

Computed values of  the double sum in [A13] show a fractional flux gain of  0.0369 Fo at d = 2.42, 
which decreases through 0 at d = b / R  ,~, 2.62 to -0 .0333 Fo at d = 2.80. These small fractions are 
comparable with other neglected terms, and so these estimates are sufficient to demonstrate that, 
when the ring spacing in each plane is such that the area inside the rings equals the area outside, 
the flux through a ring is nearly equal to its value in the absence of  all rings and hence similar 
to the flux between the rings. This is described as the equal-area principle in the text. 


